Вирус живой организм или нет. Является ли вирус живым организмом. Живой или неживой

Медицина. Здоровье. Рак. Онкология. Болезни. Лечение. Инфекции. Вирусы. Вирус иммунодефицита человека.


О наиболее частых причинах иммунных нарушений Вы можете узнать на странице «ПРИЧИНЫ ИММУНОПАТОЛОГИЙ ».
О современных методах организации лечения у детей и взрослых различных иммунопатологий и связанных с ними заболеваний (аллергий, иммунодефицитов, диатезов, дисбактериозов, бронхитов, дерматитов, различных бактериальных и вирусных инфекций) смотрите на странице «ДИАГНОСТИКА И ЛЕЧЕНИЕ ».
С перечислением заболеваний, связанных с нарушениями иммунного статуса, вы можете ознакомиться на странице «СПИСОК ЗАБОЛЕВАНИЙ ».

Роль иммунопатологий
в развитии вирусных заболеваний
у детей и взрослых

В настоящее время лекарств против вирусов, т.е. веществ, эффективно убивающих или блокирующих в заболевшем организме непосредственно сами вирусы, не только не существует, но даже теоретически не просматривается возможность их появления в обозримом будущем.

При лечении вирусных заболеваний, основной причиной которых являются те или иные иммунодефицитные состояния больных, используются различные методы, стимулирующие собственные защитные механизмы организма, что не во всех случаях достаточно эффективно на фоне уже имеющегося иммунопатологического состояния. Поэтому вирусные заболевания представляют существенную опасность для значительной части людей, страдающих иммунодефицитами. Ведь только в ХХ-ом веке только от черной оспы (пока с ней не покончили с помощью массовых вакцинаций в 1982 г) погибло 280 миллионов человек. Но при всех возникавших эпидемиях самых разных болезней всегда было много людей, которые без всякой защиты с начала до конца эпидемии работали непосредственно с больными и при этом сами оставались здоровыми.

С вирусными заболеваниями может справиться только иммунная защита организма , которая опознает появившиеся клетки с измененной генетикой и уничтожает их, не позволяя продуцировать вирионы. Вирусы распространены повсеместно и постоянно атакуют все живые существа. Поэтому в организме здорового человека каждую секунду опознается и уничтожается около 3-х тысяч пораженных клеток - иммунные реакции непрерывно круглосуточно борются за сохрание жизнеспособности в окружающей среде, обеспечивая защиту от множества неизбежно проникающих в организм различных видов патогенной микрофлоры.

Нарушения функционирования иммунной защиты человека, при которых организм недостаточно эффективно опознает клетки с измененной (чужой по отношению к данному организму) генетикой, приводят к бесконтрольному увеличению количества пораженных клеток и развитию вирусных и других инфекционных заболеваний, а в более тяжелых случаях и к развитию онкологических процессов, при которых также характерно бесконтрольное размножение клеток с измененным генетическим аппаратом (раковых клеток). Поэтому длительно протекающие или протекающие в тяжелой форме вирусные заболевания рассматриваются в современной медицине как предраковые состояния .

О вирусах

В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней. Проблема заключается в том, что вирусы очень малы по сравнению с бактериями и, в большинстве случаев, не могут наблюдаться в оптический микроскоп. Только появление в 1950-х годах электронной микроскопии позволило непосредственно изучать структуру вирусов. (Любопытно, что электронный микроскоп изобрел тот же человек, который в 1930-х заложил теоретические и технические основы и создал всю структуру современного телевидения - американец русского происхождения Владимир Кузьмич Зворыкин - 1888-1982 г.г.)

Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции как переносчики межвидовой генетической информации , генетически связывая все живое в единое развивающееся целое - биосферу Земли. Подавляющее большинство вирусов совершенно безвредно для человека .

В конце XIX века было установлено, что некоторые болезни, в том числе бешенство и ящур, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.

Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г., когда Уэнделл Стэнли (Wendell Stanley) впервые получил вирус табачной мозаики в кристаллической форме. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине.

Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК), упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм. Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином), картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геноме. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки.

Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. По словам вирусологов Марка ван Регенмортеля (M.H.V. van Regenmortel) из Страсбургского университета во Франции и Брайана Махи (B.W. Mahy) из центров по профилактике заболеваний и контролю за их распространением, такой способ существования можно назвать "жизнью взаймы". Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов.

Вирус иммунодефицита человека

Ученые кристаллизовали большинство клеточных компонентов (рибосомы, митохондрии, мембранные структуры, ДНК, белки) и сегодня рассматривают их либо как "химические машины", либо как материал, который эти машины используют или производят. Подобный взгляд на сложные химические структуры, обеспечивающие жизнедеятельность клетки, и стал причиной не слишком большой озабоченности молекулярных биологов статусом вирусов. Исследователи интересовались ими только как агентами, способными использовать клетки в своих целях или служить источником инфекции. Более сложная проблема, касающаяся вклада вирусов в эволюцию, остается для большинства ученых несущественной.

Живой или неживой?

Что означает слово "живой"? Большинство ученых сходятся во мнении, что помимо способности к самовоспроизведению живые организмы должны обладать и другими свойствами. Например, жизнь любого существа всегда ограничивается во времени - оно рождается и умирает. Кроме того, живые организмы имеют определенную степень автономии в биохимическом смысле, т.е. в какой-то мере полагаются на собственные метаболические процессы, обеспечивающие их веществами и энергией, которые и поддерживают их существование.

Камень, равно как и капелька жидкости, в которой протекают метаболические процессы, но которая не содержит генетического материала и не способна к самовоспроизведению, несомненно, неживой объект. Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энергию и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контексте можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал, который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.

Можно также рассматривать живое и как состояние, в которое при определенных условиях переходит система, состоящая из неживых компонентов, обладающих определенными свойствами. В качестве примера подобных сложных (эмерджентных) систем можно привести жизнь и сознание. Чтобы достичь соответствующего статуса, у них должен быть определенный уровень сложности. Так, нейрон (сам по себе или даже в составе нейронной сети) не обладает сознанием, для этого необходим мозг. Но и интактный мозг может быть живым в биологическом смысле и в то же время не обеспечивать сознание. Точно так же ни клеточные, ни вирусные гены или белки сами по себе не служат живой субстанцией, а клетка, лишенная ядра, сходна с обезглавленным человеком, поскольку не имеет критического уровня сложности. Вирус тоже не способен достичь подобного уровня. Так что жизнь можно определить как некое сложное эмерджентное состояние, включающее такие же основополагающие "строительные блоки", которыми обладает и вирус. Если следовать такой логике, то вирусы, не являясь живыми объектами в строгом смысле этого слова, все же не могут быть отнесены к инертным системам: они находятся на границе между живым и неживым.

РЕПЛИКАЦИЯ ВИРУСА

Вирусы, бесспорно, обладают свойством, присущим всем живым организмам, - способностью к воспроизведению, хотя и при непременном участии клетки-хозяина. На рисунке изображена репликация вируса, геном которого - двухцепочечная ДНК. Процесс репликации фагов (вирусов, инфицирующих бактерий, не содержащих ядра), РНК-вирусов и ретровирусов отличается от приведенного здесь лишь в деталях.

Вирусы и эволюция

У вирусов есть своя, очень длинная эволюционная история, восходящая к истокам возникновения одноклеточных организмов. Так, некоторые вирусные системы репарации, которые обеспечивают вырезание неправильных оснований из ДНК и ликвидацию повреждений, возникших под действием радикалов кислорода, и т.д., есть только у отдельных вирусов и существуют в неизменном виде миллиарды лет.

Исследователи не отрицают, что вирусы играли какую-то роль в эволюции. Но, считая их неживой материей, они ставят их в один ряд с такими факторами, как климатические условия. Такой фактор воздействовал на организмы, которые обладали изменяющимися, генетически детерминируемыми признаками, извне. Организмы, более стойкие к этому влиянию, успешно выживали, размножались и передавали свои гены следующим поколениям.

Однако в действительности вирусы воздействовали на генетический материал живых организмов не опосредованно, а самым что ни на есть прямым образом - они обменивались с ним своими ДНК и РНК, т.е. были игроками на биологическом поле. Большим сюрпризом для врачей и биологов-эволюционистов стало то, что большая часть вирусов оказалась вполне безобидными созданиями, не связанными ни с какими болезнями. Они спокойно дремлют внутри клеток-хозяев или используют их аппарат для своего неспешного воспроизведения без всякого ущерба для клетки. У таких вирусов есть масса ухищрений, позволяющих им избежать недремлющего ока иммунной системы клетки - для каждого этапа иммунного ответа у них заготовлен ген, который этот этап контролирует или видоизменяет в свою пользу.

Более того, в процессе совместного проживания клетки и вируса вирусный геном (ДНК или РНК) "колонизирует" геном хозяйской клетки, снабжая его все новыми и новыми генами, которые в итоге становятся неотъемлемой частью генома данного вида организмов. Вирусы оказывают более быстрое и прямое действие на живые организмы, чем внешние факторы, которые осуществляют отбор генетических вариантов. Многочисленность популяций вирусов вкупе с их высокой скоростью репликации и высокой частотой мутаций превращает их в основной источник генетических инноваций, постоянно создающий новые гены. Какой-нибудь уникальный ген вирусного происхождения, путешествуя, переходит от одного организма к другому и вносит вклад в эволюционный процесс.

ВЕЧНО ЖИВЫЕ

Вирусы, занимающие промежуточное положение между живым и неживым, проявляют неожиданные свойства. Вот одно из них. Обычно вирусы реплицируются только в живых клетках, но способны расти и в погибших клетках, а иногда даже возвращают последних к жизни. Как ни удивительно, но некоторые вирусы, будучи разрушенными, могут возродиться к "жизни взаймы".

Клетка, у которой уничтожена ядерная ДНК, - настоящий "покойник": она лишена генетического материала с инструкциями о деятельности. Но вирус может использовать для своей репликации оставшиеся целыми компоненты клетки и цитоплазму. Он подчиняет себе клеточный аппарат и заставляет его использовать вирусные гены как источник инструкций для синтеза вирусных белков и репликации вирусного генома. Уникальная способность вирусов развиваться в погибших клетках наиболее ярко проявляется, когда хозяевами служат одноклеточные организмы, прежде всего населяющие океаны. (Подавляющее число вирусов обитает на суше. По оценкам специалистов, в Мировом океане насчитывается не более 1030 видов вирусных частиц.)

Вирус табачной мозаики

Бактерии, фотосинтезирующие цианобактерии и водоросли, потенциальные хозяева морских вирусов, нередко погибают под действием ультрафиолетового излучения, которое разрушает их ДНК. При этом некоторые вирусы ("постояльцы" организмов) включают механизм синтеза ферментов, которые восстанавливают поврежденные молекулы хозяйской клетки и возвращают ее к жизни. Например, цианобактерии содержат фермент, который участвует в фотосинтезе, и под действием избыточного количества света иногда разрушается, что приводит к гибели клетки. И тогда вирусы под названием цианофаги "включают" синтез аналога бактериального фотосинтезирующего фермента, более устойчивого к УФ-излучению. Если такой вирус инфицирует только что погибшую клетку, фотосинтезирующий фермент может вернуть последнюю к жизни. Таким образом, вирус играет роль "генного реаниматора".

Избыточные дозы УФ-излучения могут привести к гибели и цианофагов, однако иногда им удается вернуться к жизни при помощи множественной репарации. Обычно в каждой хозяйской клетке присутствует несколько вирусов, и в случае их повреждения они могут собрать вирусный геном по частям. Различные части генома способны служить поставщиками отдельных генов, которые совместно с другими генами восстановят функции генома в полном объеме без создания целого вируса. Вирусы - единственные из всех живых организмов, способные, как птица Феникс, возрождаться из пепла.

По данным Международного консорциума по секвенированию генома человека, от 113 до 223 генов, имеющихся у бактерий и человека, отсутствуют у таких хорошо изученных организмов, как дрожжи Sacharomyces cerevisiae, плодовая мушка Drosophila melanogaster и круглый червь Caenorhabditis elegans, которые находятся между двумя крайними линиями живых организмов. Одни ученые полагают, что дрожжи, плодовая мушка и круглый червь, появившиеся после бактерий, но до позвоночных, просто утратили соответствующие гены в какой-то момент своего эволюционного развития. Другие же считают, что гены были переданы человеку проникшими в его организм бактериями.

Вместе с коллегами из Института вакцин и генной терапии при Орегонском университете здравоохранения мы предполагаем, что существовал третий путь: исходно гены имели вирусное происхождение, но затем колонизировали представителей двух разных линий организмов, например бактерий и позвоночных. Ген, которым одарила человечество бактерия, мог быть передан двум упомянутым линиям вирусом.

Более того, мы уверены, что само клеточное ядро имеет вирусное происхождение. Появление ядра (структуры, имеющейся только у эукариот, в том числе у человека, и отсутствующей у прокариот, например у бактерий) нельзя объяснить постепенной адаптацией прокариотических организмов к изменяющимся условиям. Оно могло сформироваться на основе предсуществующей высокомолекулярной вирусной ДНК, построившей себе постоянное "жилище" внутри прокариотической клетки. Подтверждением этому служит факт, что ген ДНК-полимеразы (фермента, участвующего в репликации ДНК) фага Т4 (фагами называют вирусы, которые инфицируют бактерии) по своей нуклеотидной последовательности близок к генам ДНК-полимераз как эукариот, так и инфицирующих их вирусов. Кроме того, Патрик Фортере (Patrick Forterre) из Южного парижского университета, который исследовал ферменты, участвующие в репликации ДНК, пришел к выводу, что гены, детерминирующие их синтез у эукариот, имеют вирусное происхождение.

Вирус синего языка

Вирусы влияют абсолютно на все формы жизни на Земле, а часто и определяют их судьбу. При этом они тоже эволюционируют. Прямым доказательством служит появление новых вирусов, таких как вирус иммунодефицита человека (ВИЧ), вызывающий СПИД.

Вирусы постоянно видоизменяют границу между биологическим и биохимическим мирами. Чем дальше мы будем продвигаться в исследовании геномов различных организмов, тем больше будем обнаруживать свидетельств присутствия в них генов из динамичного, очень древнего пула. Лауреат Нобелевской премии Сальвадор Лурия (Salvador Luria) в 1969 г. так говорил о влиянии вирусов на эволюцию: "Возможно, вирусы с их способностью включаться в клеточный геном и покидать его были активными участниками процесса оптимизации генетического материала всех живых существ в ходе эволюции. Просто мы этого не заметили". Независимо от того, к какому миру - живому или неживому - мы будем относить вирусы, пришло время рассматривать их не изолированно, а с учетом постоянной связи с живыми организмами.

В числе других использованы материалы Луиса Вилляреала (Luis P. Villarreal) - директора Центра по изучению вирусов при Калифорнийском университете в г. Ирвайн, опубликованные в журнале "В мире науки".

* * * * * * *

НОВЫЕ СООБЩЕНИЯ:

* * * * * * *


Вирус иммунодефицита человека (ВИЧ)

ВИРУС: СУЩЕСТВО ИЛИ ВЕЩЕСТВО?
В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней.

Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции.

В конце XIX века было установлено, что некоторые болезни, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.

Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г., когда Уэнделл Стэнли (Wendell Stanley) впервые закристаллизовал вирус табачной мозаики. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине.

Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК), упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм.

Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином), картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геноме. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки.Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов.

Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энергию и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контексте можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал, который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.

Вирусы - существо или вещество?


В течение последних 100 лет ученые не раз меняли свое представление о природе вирусов, микроскопических переносчиков болезней.

Вначале вирусы считали ядовитыми веществами, затем - одной из форм жизни, потом - биохимическими соединениями. Сегодня предполагают, что они существуют между живым и неживым мирами и являются основными участниками эволюции.

В конце XIX века было установлено, что некоторые болезни, в том числе бешенство и ящур, вызывают частицы, похожие на бактерии, но гораздо более мелкие. Поскольку они имели биологическую природу и передавались от одной жертвы к другой, вызывая одинаковые симптомы, вирусы стали рассматривать как мельчайшие живые организмы, несущие генетическую информацию.

Низведение вирусов до уровня безжизненных химических объектов произошло после 1935 г., когда Уэнделл Стэнли (Wendell Stanley) впервые закристаллизовал вирус табачной мозаики. Обнаружилось, что кристаллы состоят из сложных биохимических компонентов и не обладают необходимым для биологических систем свойством - метаболической активностью. В 1946 г. ученый получил за эту работу Нобелевскую премию по химии, а не по физиологии или медицине.

Дальнейшие исследования Стэнли четко показали, что любой вирус состоит из нуклеиновой кислоты (ДНК или РНК), упакованной в белковую оболочку. Помимо защитных белков у некоторых из них есть специфические вирусные белки, участвующие в инфицировании клетки. Если судить о вирусах только по этому описанию, то они действительно больше похожи на химические субстанции, чем на живой организм. Но когда вирус проникает в клетку (после чего ее называют клеткой-хозяином), картина меняется. Он сбрасывает белковую оболочку и подчиняет себе весь клеточный аппарат, заставляя его синтезировать вирусные ДНК или РНК и вирусные белки в соответствии с инструкциями, записанными в его геном е. Далее происходит самосборка вируса из этих компонентов и появляется новая вирусная частица, готовая инфицировать другие клетки.

Такая схема заставила многих ученых по-новому взглянуть на вирусы. Их стали рассматривать как объекты, находящиеся на границе между живым и неживым мирами. По словам вирусологов Марка ван Регенмортеля (M.H.V. van Regenmortel) из Страсбургского университета во Франции и Брайана Махи (B.W. Mahy) из центров по профилактике заболеваний и контролю за их распространением, такой способ существования можно назвать "жизнью взаймы". Интересен следующий факт: при том, что долгое время биологи рассматривали вирус как "белковую коробку", наполненную химическими деталями, они использовали его способность к репликации в хозяйской клетке для изучения механизма кодирования белков. Современная молекулярная биология во многом обязана своими успехами информации, полученной при изучении вирусов.

Ученые кристаллизовали большинство клеточных компонентов (рибосомы, митохондрии, мембранные структуры, ДНК, белки) и сегодня рассматривают их либо как "химические машины", либо как материал, который эти машины используют или производят. Подобный взгляд на сложные химические структуры, обеспечивающие жизнедеятельность клетки, и стал причиной не слишком большой озабоченности молекулярных биологов статусом вирусов. Исследователи интересовались ими только как агентами, способными использовать клетки в своих целях или служить источником инфекции. Более сложная проблема, касающаяся вклада вирусов в эволюцию, остается для большинства ученых несущественной.

Быть или не быть?

Что означает слово "живой"? Большинство ученых сходятся во мнении, что помимо способности к самовоспроизведению живые организмы должны обладать и другими свойствами. Например, жизнь любого существа всегда ограничивается во времени - оно рождается и умирает. Кроме того, живые организмы имеют определенную степень автономии в биохимическом смысл е, т.е. в какой-то мере полагаются на собственные метаболические процессы, обеспечивающие их веществами и энерги ей, которые и поддерживают их существование.

Камень, равно как и капелька жидкости, в которой протекают метаболические процессы, но которая не содержит генетического материала и не способна к самовоспроизведению, несомненно, неживой объект. Бактерия же - живой организм, и хотя она состоит всего из одной клетки, она может вырабатывать энерги ю и синтезировать вещества, обеспечивающие ее существование и воспроизведение. Что в этом контекст е можно сказать о семени? Не всякое семя проявляет признаки жизни. Однако, находясь в покое, оно содержит тот потенциал , который получило от несомненно живой субстанции и который при определенных условиях может реализоваться. В то же время семя можно необратимо разрушить, и тогда потенциал останется нереализованным. В этом плане вирус больше напоминает семя, чем живую клетку: у него есть некие возможности, которые могут и не осуществиться, однако нет способности к автономному существованию.

Можно также рассматривать живое и как состояние, в которое при определенных условиях переходит система, состоящая из неживых компонентов, обладающих определенными свойствами. В качестве примера подобных сложных (эмерджентных) систем можно привести жизнь и сознание. Чтобы достичь соответствующего статуса, у них должен быть определенный уровень сложности. Так, нейрон (сам по себе или даже в составе нейрон ной сети) не обладает сознанием, для этого необходим мозг. Но и интактный мозг может быть живым в биологическом смысл е и в то же время не обеспечивать сознание. Точно так же ни клеточные, ни вирусные гены или белки сами по себе не служат живой субстанцией, а клетка, лишенная ядра, сходна с обезглавленным человеком, поскольку не имеет критического уровня сложности. Вирус тоже не способен достичь подобного уровня. Так что жизнь можно определить как некое сложное эмерджентное состояние, включающее такие же основополагающие "строительные блоки", которыми обладает и вирус. Если следовать такой логике, то вирусы, не являясь живыми объектами в строгом смысл е этого слова, все же не могут быть отнесены к инертным системам: они находятся на границе между живым и неживым.

РЕПЛИКАЦИЯ ВИРУСА
Вирусы, бесспорно, обладают свойством, присущим всем живым организмам, - способностью к воспроизведению, хотя и при непременном участии клетки-хозяина. На рисунке изображена репликация вируса, геном которого - двухцепочечная ДНК. Процесс репликации фагов (вирусов, инфицирующих бактерий, не содержащих ядра), РНК-вирусов и ретровирусов отличается от приведенного здесь лишь в деталях.

Вирусы и эволюция

У вирусов есть своя, очень длинная эволюционная история, восходящая к истокам возникновения одноклеточных организмов. Так, некоторые вирусные системы репарации, которые обеспечивают вырезание неправильных оснований из ДНК и ликвидацию повреждений, возникших под действием радикалов кислорода, и т.д., есть только у отдельных вирусов и существуют в неизменном виде миллиарды лет.

Исследователи не отрицают, что вирусы играли какую-то роль в эволюции. Но, считая их неживой материей, они ставят их в один ряд с такими факторами, как климатические условия. Такой фактор воздействовал на организмы, которые обладали изменяющимися, генетически детерминируемыми признаками, извне. Организмы, более стойкие к этому влиянию, успешно выживали, размножались и передавали свои гены следующим поколениям.

Однако в действительности вирусы воздействовали на генетический материал живых организмов не опосредованно, а самым что ни на есть прямым образом - они обменивались с ним своими ДНК и РНК, т.е. были игроками на биологическом поле. Большим сюрпризом для врачей и биологов-эволюционистов стало то, что большая часть вирусов оказалась вполне безобидными созданиями, не связанными ни с какими болезнями. Они спокойно дремлют внутри клеток-хозяев или используют их аппарат для своего неспешного воспроизведения без всякого ущерба для клетки. У таких вирусов есть масса ухищрений, позволяющих им избежать недремлющего ока иммунной системы клетки - для каждого этапа иммунного ответа у них заготовлен ген, который этот этап контролирует или видоизменяет в свою пользу.

Более того, в процессе совместного проживания клетки и вируса вирусный геном (ДНК или РНК) "колонизирует" геном хозяйской клетки, снабжая его все новыми и новыми генами, которые в итоге становятся неотъемлемой частью геном а данного вида организмов. Вирусы оказывают более быстрое и прямое действие на живые организмы, чем внешние факторы, которые осуществляют отбор генетических вариантов. Многочисленность популяций вирусов вкупе с их высокой скоростью репликации и высокой частотой мутаций превращает их в основной источник генетических инноваций, постоянно создающий новые гены. Какой-нибудь уникальный ген вирусного происхождения, путешествуя, переходит от одного организма к другому и вносит вклад в эволюционный процесс.

Клетка, у которой уничтожена ядерная ДНК, - настоящий "покойник": она лишена генетического материала с инструкциями о деятельности. Но вирус может использовать для своей репликации оставшиеся целыми компоненты клетки и цитоплазму. Он подчиняет себе клеточный аппарат и заставляет его использовать вирусные гены как источник инструкций для синтеза вирусных белков и репликации вирусного геном а. Уникальная способность вирусов развиваться в погибших клетках наиболее ярко проявляется, когда хозяевами служат одноклеточные организмы, прежде всего населяющие океаны. (Подавляющее число вирусов обитает на суше. По оценкам специалистов, в Мировом океане насчитывается не более 1030 вирусных частиц.)

Бактерии, фотосинтезирующие цианобактерии и водоросли, потенциал ьные хозяева морских вирусов, нередко погибают под действием ультрафиолетового излучения, которое разрушает их ДНК. При этом некоторые вирусы ("постояльцы" организмов) включают механизм синтеза ферментов, которые восстанавливают поврежденные молекулы хозяйской клетки и возвращают ее к жизни. Например, цианобактерии содержат фермент, который участвует в фотосинтезе, и под действием избыточного количества света иногда разрушается, что приводит к гибели клетки. И тогда вирусы под названием цианофаги "включают" синтез аналога бактериального фотосинтезирующего фермента, более устойчивого к УФ-излучению. Если такой вирус инфицирует только что погибшую клетку, фотосинтезирующий фермент может вернуть последнюю к жизни. Таким образом, вирус играет роль "генного реаниматора".

Избыточные дозы УФ-излучения могут привести к гибели и цианофагов, однако иногда им удается вернуться к жизни при помощи множественной репарации. Обычно в каждой хозяйской клетке присутствует несколько вирусов, и в случае их повреждения они могут собрать вирусный геном по частям. Различные части геном а способны служить поставщиками отдельных генов, которые совместно с другими генами восстановят функции геном а в полном объеме без создания целого вируса. Вирусы - единственные из всех живых организмов, способные, как птица Феникс, возрождаться из пепла.

По данным Международного консорциума по секвенированию геном а человека, от 113 до 223 генов, имеющихся у бактерий и человека, отсутствуют у таких хорошо изученных организмов, как дрожжи Sacharomyces cerevisiae, плодовая мушка Drosophila melanogaster и круглый червь Caenorhabditis elegans, которые находятся между двумя крайними линиями живых организмов. Одни ученые полагают, что дрожжи, плодовая мушка и круглый червь, появившиеся после бактерий, но до позвоночных, просто утратили соответствующие гены в какой-то момент своего эволюционного развития. Другие же считают, что гены были переданы человеку проникшими в его организм бактериями.

Вместе с коллегами из Института вакцин и генной терапии при Орегонском университете здравоохранения мы предполагаем, что существовал третий путь: исходно гены имели вирусное происхождение, но затем колонизировали представителей двух разных линий организмов, например бактерий и позвоночных. Ген, которым одарила человечество бактерия, мог быть передан двум упомянутым линиям вирусом.

Более того, мы уверены, что само клеточное ядро имеет вирусное происхождение. Появление ядра (структуры, имеющейся только у эукариот, в том числе у человека, и отсутствующей у прокариот, например у бактерий) нельзя объяснить постепенной адаптацией прокариотических организмов к изменяющимся условиям. Оно могло сформироваться на основе предсуществующей высокомолекулярной вирусной ДНК, построившей себе постоянное "жилище" внутри прокариотической клетки. Подтверждением этому служит факт, что ген ДНК-полимеразы (фермента, участвующего в репликации ДНК) фага Т4 (фагами называют вирусы, которые инфицируют бактерии) по своей нуклеотидной последовательности близок к генам ДНК-полимераз как эукариот, так и инфицирующих их вирусов. Кроме того, Патрик Фортере (Patrick Forterre) из Южного парижского университета, который исследовал ферменты, участвующие в репликации ДНК, пришел к выводу, что гены, детерминирующие их синтез у эукариот, имеют вирусное происхождение.

Вирус синего языка

Вирусы влияют абсолютно на все формы жизни на Земле, а часто и определяют их судьбу. При этом они тоже эволюционируют. Прямым доказательством служит появление новых вирусов, таких как вирус иммунодефицита человека (ВИЧ), вызывающий СПИД.

Вирусы постоянно видоизменяют границу между биологическим и биохимическим мирами. Чем дальше мы будем продвигаться в исследовании геном ов различных организмов, тем больше будем обнаруживать свидетельств присутствия в них генов из динамичного, очень древнего пула. Лауреат Нобелевской премии Сальвадор Лурия (Salvador Luria) в 1969 г. так говорил о влиянии вирусов на эволюцию: "Возможно, вирусы с их способностью включаться в клеточный геном и покидать его были активными участниками процесса оптимизации генетического материала всех живых существ в ходе эволюции. Просто мы этого не заметили". Независимо от того, к какому миру - живому или неживому - мы будем относить вирусы, пришло время рассматривать их не изолированно, а с учетом постоянной связи с живыми организмами.

ОБ АВТОРЕ:
Луис Вилляреал
(Luis P. Villarreal) - директор Центра по изучению вирусов при Калифорнийском университете в г. Ирвайн. Получил степень кандидата биологических наук в Калифорнийском университете в Сан-Диего, затем работал в Стэнфордском университете в лаборатории лауреата Нобелевской премии Пола Берга. Активно занимается педагогической деятельностью, в настоящее время участвует в разработке программ по борьбе с угрозой биотерроризма.

Почти все, что тут было сказано, прямого отношения к делу не имет.
Вирус - это вобще не организм и уж, тем боле, не живой.
Живой организм - это сложная биологическая система которая способна к самовоспроизводству и подержанию собственной жизнедеятельности (дыханию, потреблению питательных веществ и т. д.) . Он может быть одноклеточным (например, бактерии) или многоклеточным. Вирус - это слепок из молекул ДНК или РНК и белков, который является всего лишь куском генетического кода, не проявляющим основных признаков жизнедеятельности.
Если привести аналогию из мира механизмов, то клетку можно представить как, например, ксерокс (а это механизм) , а вирус, это лист бумаги с текстом (это уже не механизм) . Так вот, лист бумаги, попадая в ксерокс приводит к тому, что ксерокс начинает выдавать копии этого листа с текстом, и будет это делать до тех пор, пока либо этот лист не достанут из ксерокса, либо пока ксерокс не навернется.
Примерно те же отношения возникают между клеткой (живой системой) и вирусом (неживым объектом) .

3 годов назад от Роман Сапрыга

Если выразить своё согласие или несогласие на Вашу аналогию с роботом, то вполне подходяще сравнение. Немного теории: вирус от лат. «virus» - яд

Подавляюще большинство ныне живущих на Земле организмов состоит из клеток, и лишь вирусы не имеют клеточного строения.

По этому важнейшему признаку все живое в настояще время делится учеными на две империи:
- доклеточные (вирусы и фаги) ,
- клеточные (все остальные организмы: бактерии и близкие к ним группы, грибы, зеленые растения, животные и человек) .

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенных в белковую оболочку (капсид) , иногда содержащую также липидные и углеводные компоненты.

Диаметр вирусных частиц (их называют также вирионами) равен 20-300 нм. Т. е. они намного меньше, чем мельчайшие из прокариотических клеток. Так как размеры белков и некоторых аминокислот находятся в диапазоне 2-50 нм, то вирусную частицу можно было бы считать просто комплексом макромолекул. Вследствие их малых размеров и неспособности к самовоспроизведению вирусы часто относят к разряду «неживого».

Говорят: «Вирус – это промежуточная форма жизни, или нежизни», т. к. вне клетки хозяина он превращается в кристалл.

Есть мнение что вирус это переход от химии к живому.

Важнейшими отличительными особенностями вирусов являются следующие:

2. Не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения используют обмен веществ клетки-хозяина, е ферменты и энергию.

3 годов назад от александр жмурко

Cynthia Goldsmith This colorized transmission electron micrograph (TEM) revealed some of the ultrastructural morphology displayed by an Ebola virus virion. See PHIL 1832 for a black and white version of this image. Where is Ebola virus found in nature?

The exact origin, locations, and natural habitat (known as the «natural reservoir») of Ebola virus remain unknown. However, on the basis of available evidence and the nature of similar viruses, researchers believe that the virus is zoonotic (animal-borne) and is normally maintained in an animal host that is native to the African continent. A similar host is probably associated with Ebola-Reston which was isolated from infected cynomolgous monkeys that were imported to the United States and Italy from the Philippines. The virus is not known to be native to other continents, such as North America.

Попадают под определение жизни: они находятся где-то посредине между сверхмолекулярными комплексами и очень простыми биологическими организмами. Вирусы содержат некоторые структуры и демонстрируют определенные виды деятельности, которые являются общими для органической жизни, но им не хватает многих других характеристик. Они полностью состоят из одной цепи генетической информации, заключенной в оболочку белка. Вирусы испытывают недостаток большей части внутренней структуры и процессов, которые характеризуют «жизнь», включая биосинтетический процесс, необходимый для размножения. Чтобы (воспроизводится), вирус должен инфицировать подходящую клетку-хозяина.

Когда исследователи впервые обнаружили вирусы, которые вели себя как , но были намного меньше и вызывали такие заболевания, как бешенство и ящур, стало общеизвестно, что вирусы биологически «живы». Однако это восприятие изменилось в 1935 году, когда вирус табачной мозаики кристаллизировали, и показали, что у частиц не было механизмов, необходимых для метаболической функции. Как только было установлено, что вирусы состоят только из ДНК или РНК, окруженной белковой оболочкой, научной точкой зрения стало, что они являются более сложными биохимическими механизмами, чем живые организмы.

Вирусы существуют в двух разных состояниях. Когда он не контактируют с клеткой-хозяином, вирус остается полностью бездействующим. В это время внутри вируса нет внутренней биологической активности, и по существу вирус является не более чем статической органической частицей. В этом простом, явно неживом состоянии вирусы называются «вирионами». Вирионы могут оставаться в этом состоянии бездействия в течение продолжительных периодов времени, терпеливо ожидая контакта с соответствующим хозяином. Когда вирион входит в контакт с соответствующим хозяином, он становится активным вирусом. С этого момента вирус отображает свойства, типичные для живых организмов, такие как реагирование на окружающую среду и направление усилий на саморепликацию.

Что определяет жизнь?

Нет четкого определения того, что отделяет живое от неживого. Одним из определений может быть точка, в которой субъект имеет самосознание. В этом смысле, тяжелая травма головы, может классифицироваться, как смерть мозга. Тело и мозг могут все еще функционируют на базовом уровне, а также заметна метаболическая активность во всех клетках, составляющих большой организм, но предполагается, что нет самосознания, и следовательно, мозг мертв. На другом конце спектра критерием определения жизни является возможность передать генетический материал будущим поколениям, тем самым восстановив свое подобие. Во втором, более упрощенном определении, вирусы несомненно живы. Они, бесспорно, являются наиболее эффективными на Земле при распространении своей генетической информации.

Хотя нет окончательного решения вопроса о том, можно ли считать вирусы живыми существами, их способность передавать генетическую информацию будущим поколениям делает их основными игроками в разрезе эволюции.

Доминирование вирусов

Организация и сложность медленно увеличивались с того момента, когда макромолекулы начали собираться в изначальном супе жизни. Нужно задуматься о существовании необъяснимого принципа, прямо противоположного второму , который ведет эволюцию к высшей организации. Мало того, что вирусы были чрезвычайно эффективны при распространении собственного генетического материала, они также несли ответственность за несказанное перемещение и смешивание генетического кода между другими организмами. Вариабельность генетического кода, возможно, является движущей силой . Благодаря выражению переменных , организмы способны адаптироваться и стать более эффективными в изменяющихся условиях окружающей среды.

Заключительная мысль

Может быть, актуальный вопрос заключается не в том, живы ли вирусы, сколько в том, какова их роль в движении и формировании жизни на Земле, как мы ее воспринимаем сегодня?